Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34068352

RESUMO

The aim of this study was to evaluate the muscle activities and subjective discomfort according to the heights of tasks and the lower-limb exoskeleton CEX (Chairless EXoskeleton), which is a chair-type passive exoskeleton. Twenty healthy subjects (thirteen males and seven females) participated in this experiment. The independent variables were wearing of the exoskeleton (w/ CEX, w/o CEX), working height (6 levels: 40, 60, 80, 100, 120, and 140 cm), and muscle type (8 levels: upper trapezius (UT), erector spinae (ES), middle deltoid (MD), triceps brachii (TB), biceps brachii (BB), biceps femoris (BF), rectus femoris (RF), and tibialis anterior (TA)). The dependent variables were EMG activity (% MVC) and subjective discomfort rating. When wearing the CEX, the UT, ES, RF, and TA showed lower muscle activities at low working heights (40-80 cm) than not wearing the CEX, whereas those muscles showed higher muscle activities at high working heights (100-140 cm). Use of the CEX had a positive effect on subjective discomfort rating at lower working heights. Generally, lower discomfort was reported at working heights below 100 cm when using the CEX. At working heights of 100-140 cm, the muscle activity when wearing the CEX tended to be greater than when not wearing it. Thus, considering the results of this study, the use of the lower-limb exoskeleton (CEX) at a working height of 40-100 cm might reduce the muscle activity and discomfort of whole body and decrease the risk of related disorders.


Assuntos
Exoesqueleto Energizado , Eletromiografia , Ergonomia , Feminino , Humanos , Extremidade Inferior , Masculino , Músculo Esquelético , Postura
2.
Appl Ergon ; 67: 237-245, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29122195

RESUMO

In automated driving, a driver can completely concentrate on non-driving-related tasks (NDRTs). This study investigated the flow experience of a driver who concentrated on NDRTs and tasks that induce mental workload under conditional automation. Participants performed NDRTs under different demand levels: a balanced demand-skill level (fit condition) to induce flow, low-demand level to induce boredom, and high-demand level to induce anxiety. In addition, they performed the additional N-Back task, which artificially induces mental workload. The results showed participants had the longest reaction time when they indicated the highest flow score, and had the longest gaze-on time, road-fixation time, hands-on time, and take-over time under the fit condition. Significant differences were not observed in the driver reaction times in the fit condition and the additional N-Back task, indicating that performing NDRTs that induce a high flow experience could influence driver reaction time similar to performing tasks with a high mental workload.


Assuntos
Automação , Condução de Veículo/psicologia , Comportamento Multitarefa , Análise e Desempenho de Tarefas , Carga de Trabalho/psicologia , Adulto , Atenção , Tédio , Feminino , Fixação Ocular , Humanos , Masculino , Tempo de Reação , Adulto Jovem
3.
Appl Ergon ; 58: 198-207, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27633214

RESUMO

Haptic technology is used in various fields to transmit information to the user with or without visual and auditory cues. This study aimed to provide preliminary data for use in developing a haptic interface for an antigravity (anti-G) suit. With the structural characteristics of the anti-G suit in mind, we determined five areas on the body (lower back, outer thighs, inner thighs, outer calves, and inner calves) on which to install ten bar-type eccentric rotating mass (ERM) motors as vibration actuators. To determine the design factors of the haptic anti-G suit, we conducted three experiments to find the absolute threshold, moderate intensity, and subjective assessments of vibrotactile stimuli. Twenty-six fighter pilots participated in the experiments, which were conducted in a fixed-based flight simulator. From the results of our study, we recommend 1) absolute thresholds of ∼11.98-15.84 Hz and 102.01-104.06 dB, 2) moderate intensities of 74.36 Hz and 126.98 dB for the lower back and 58.65 Hz and 122.37 dB for either side of the thighs and calves, and 3) subjective assessments of vibrotactile stimuli (displeasure, easy to perceive, and level of comfort). The results of this study will be useful for the design of a haptic anti-G suit.


Assuntos
Trajes Gravitacionais , Militares , Pilotos , Limiar Sensorial , Percepção do Tato , Vibração , Adulto , Dorso/fisiologia , Comportamento do Consumidor , Desenho de Equipamento , Humanos , Perna (Membro)/fisiologia , Masculino , República da Coreia , Coxa da Perna/fisiologia , Percepção do Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...